Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with Deep Learning (2110.11970v2)

Published 22 Oct 2021 in astro-ph.GA and astro-ph.CO

Abstract: Hydrodynamic simulations provide a powerful, but computationally expensive, approach to study the interplay of dark matter and baryons in cosmological structure formation. Here we introduce the EMulating Baryonic EnRichment (EMBER) Deep Learning framework to predict baryon fields based on dark-matter-only simulations thereby reducing computational cost. EMBER comprises two network architectures, U-Net and Wasserstein Generative Adversarial Networks (WGANs), to predict two-dimensional gas and HI densities from dark matter fields. We design the conditional WGANs as stochastic emulators, such that multiple target fields can be sampled from the same dark matter input. For training we combine cosmological volume and zoom-in hydrodynamical simulations from the Feedback in Realistic Environments (FIRE) project to represent a large range of scales. Our fiducial WGAN model reproduces the gas and HI power spectra within 10% accuracy down to ~10 kpc scales. Furthermore, we investigate the capability of EMBER to predict high resolution baryon fields from low resolution dark matter inputs through upsampling techniques. As a practical application, we use this methodology to emulate high-resolution HI maps for a dark matter simulation of a L=100 Mpc/h comoving cosmological box. The gas content of dark matter haloes and the HI column density distributions predicted by EMBER agree well with results of large volume cosmological simulations and abundance matching models. Our method provides a computationally efficient, stochastic emulator for augmenting dark matter only simulations with physically consistent maps of baryon fields.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.