Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Memory Efficient Adaptive Attention For Multiple Domain Learning (2110.10969v1)

Published 21 Oct 2021 in cs.LG, cs.CV, and cs.NE

Abstract: Training CNNs from scratch on new domains typically demands large numbers of labeled images and computations, which is not suitable for low-power hardware. One way to reduce these requirements is to modularize the CNN architecture and freeze the weights of the heavier modules, that is, the lower layers after pre-training. Recent studies have proposed alternative modular architectures and schemes that lead to a reduction in the number of trainable parameters needed to match the accuracy of fully fine-tuned CNNs on new domains. Our work suggests that a further reduction in the number of trainable parameters by an order of magnitude is possible. Furthermore, we propose that new modularization techniques for multiple domain learning should also be compared on other realistic metrics, such as the number of interconnections needed between the fixed and trainable modules, the number of training samples needed, the order of computations required and the robustness to partial mislabeling of the training data. On all of these criteria, the proposed architecture demonstrates advantages over or matches the current state-of-the-art.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.