Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Active Meta-Learning for Black-Box Optimization (2110.09943v2)

Published 19 Oct 2021 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Data-efficient learning algorithms are essential in many practical applications for which data collection is expensive, e.g., for the optimal deployment of wireless systems in unknown propagation scenarios. Meta-learning can address this problem by leveraging data from a set of related learning tasks, e.g., from similar deployment settings. In practice, one may have available only unlabeled data sets from the related tasks, requiring a costly labeling procedure to be carried out before use in meta-learning. For instance, one may know the possible positions of base stations in a given area, but not the performance indicators achievable with each deployment. To decrease the number of labeling steps required for meta-learning, this paper introduces an information-theoretic active task selection mechanism, and evaluates an instantiation of the approach for Bayesian optimization of black-box models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube