Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energon: Towards Efficient Acceleration of Transformers Using Dynamic Sparse Attention (2110.09310v2)

Published 18 Oct 2021 in cs.AR, cs.AI, and cs.LG

Abstract: In recent years, transformer models have revolutionized NLP and shown promising performance on Computer Vision (CV) tasks. Despite their effectiveness, transformers' attention operations are hard to accelerate due to the complicated data movement and quadratic computational complexity, prohibiting the real-time inference on resource-constrained edge-computing platforms. To tackle this challenge, we propose Energon, an algorithm-architecture co-design approach that accelerates various transformers using dynamic sparse attention. With the observation that attention results only depend on a few important query-key pairs, we propose a Mix-Precision Multi-Round Filtering (MP-MRF) algorithm to dynamically identify such pairs at runtime. We adopt low bitwidth in each filtering round and only use high-precision tensors in the attention stage to reduce overall complexity. By this means, we significantly mitigate the computational cost with negligible accuracy loss. To enable such an algorithm with lower latency and better energy efficiency, we also propose an Energon co-processor architecture. Elaborated pipelines and specialized optimizations jointly boost the performance and reduce power consumption. Extensive experiments on both NLP and CV benchmarks demonstrate that Energon achieves $168\times$ and $8.7\times$ geo-mean speedup and up to $104\times$ and $103\times$ energy reduction compared with Intel Xeon 5220 CPU and NVIDIA V100 GPU. Compared to state-of-the-art attention accelerators SpAtten and $A3$, Energon also achieves $1.7\times, 1.25\times$ speedup and $1.6 \times, 1.5\times $ higher energy efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhe Zhou (33 papers)
  2. Junlin Liu (9 papers)
  3. Zhenyu Gu (7 papers)
  4. Guangyu Sun (47 papers)
Citations (38)