Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Superpixel-based Network for Blind Image Quality Assessment (2110.06564v1)

Published 13 Oct 2021 in cs.CV and cs.LG

Abstract: The goal in a blind image quality assessment (BIQA) model is to simulate the process of evaluating images by human eyes and accurately assess the quality of the image. Although many approaches effectively identify degradation, they do not fully consider the semantic content in images resulting in distortion. In order to fill this gap, we propose a deep adaptive superpixel-based network, namely DSN-IQA, to assess the quality of image based on multi-scale and superpixel segmentation. The DSN-IQA can adaptively accept arbitrary scale images as input images, making the assessment process similar to human perception. The network uses two models to extract multi-scale semantic features and generate a superpixel adjacency map. These two elements are united together via feature fusion to accurately predict image quality. Experimental results on different benchmark databases demonstrate that our algorithm is highly competitive with other approaches when assessing challenging authentic image databases. Also, due to adaptive deep superpixel-based network, our model accurately assesses images with complicated distortion, much like the human eye.

Citations (3)

Summary

We haven't generated a summary for this paper yet.