Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Blindly Assess Image Quality in the Laboratory and Wild (1907.00516v3)

Published 1 Jul 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Computational models for blind image quality assessment (BIQA) are typically trained in well-controlled laboratory environments with limited generalizability to realistically distorted images. Similarly, BIQA models optimized for images captured in the wild cannot adequately handle synthetically distorted images. To face the cross-distortion-scenario challenge, we develop a BIQA model and an approach of training it on multiple IQA databases (of different distortion scenarios) simultaneously. A key step in our approach is to create and combine image pairs within individual databases as the training set, which effectively bypasses the issue of perceptual scale realignment. We compute a continuous quality annotation for each pair from the corresponding human opinions, indicating the probability of one image having better perceptual quality. We train a deep neural network for BIQA over the training set of massive image pairs by minimizing the fidelity loss. Experiments on six IQA databases demonstrate that the optimized model by the proposed training strategy is effective in blindly assessing image quality in the laboratory and wild, outperforming previous BIQA methods by a large margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Weixia Zhang (19 papers)
  2. Kede Ma (57 papers)
  3. Guangtao Zhai (230 papers)
  4. Xiaokang Yang (207 papers)
Citations (57)