Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exceptional points and pseudo-Hermiticity in real potential scattering (2110.05884v3)

Published 12 Oct 2021 in quant-ph, math-ph, math.MP, and physics.optics

Abstract: We employ a recently-developed transfer-matrix formulation of scattering theory in two dimensions to study a class of scattering setups modeled by real potentials. The transfer matrix for these potentials is related to the time-evolution operator for an associated pseudo-Hermitian Hamiltonian operator $\widehat{\mathbf{H}}$ which develops an exceptional point for a discrete set of incident wavenumbers. We use the spectral properties of this operator to determine the transfer matrix of these potentials and solve their scattering problem. We apply our general results to explore the scattering of waves by a waveguide of finite length in two dimensions, where the source of the incident wave and the detectors measuring the scattered wave are positioned at spatial infinities while the interior of the waveguide, which is filled with an inactive material, forms a finite rectangular region of the space. The study of this model allows us to elucidate the physical meaning and implications of the presence of the real and complex eigenvalues of $\widehat{\mathbf{H}}$ and its exceptional points. Our results reveal the relevance of the concepts of pseudo-Hermitian operator and exceptional point in the standard quantum mechanics of closed systems where the potentials are required to be real.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.