Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Rethinking Person Re-Identification via Semantic-Based Pretraining (2110.05074v2)

Published 11 Oct 2021 in cs.CV

Abstract: Pretraining is a dominant paradigm in computer vision. Generally, supervised ImageNet pretraining is commonly used to initialize the backbones of person re-identification (Re-ID) models. However, recent works show a surprising result that CNN-based pretraining on ImageNet has limited impacts on Re-ID system due to the large domain gap between ImageNet and person Re-ID data. To seek an alternative to traditional pretraining, here we investigate semantic-based pretraining as another method to utilize additional textual data against ImageNet pretraining. Specifically, we manually construct a diversified FineGPR-C caption dataset for the first time on person Re-ID events. Based on it, a pure semantic-based pretraining approach named VTBR is proposed to adopt dense captions to learn visual representations with fewer images. We train convolutional neural networks from scratch on the captions of FineGPR-C dataset, and then transfer them to downstream Re-ID tasks. Comprehensive experiments conducted on benchmark datasets show that our VTBR can achieve competitive performance compared with ImageNet pretraining - despite using up to 1.4x fewer images, revealing its potential in Re-ID pretraining.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.