Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Personality Detection Tools for Software Engineering Research: How Far Can We Go? (2110.05035v2)

Published 11 Oct 2021 in cs.SE, cs.AI, cs.CL, and cs.LG

Abstract: Assessing the personality of software engineers may help to match individual traits with the characteristics of development activities such as code review and testing, as well as support managers in team composition. However, self-assessment questionnaires are not a practical solution for collecting multiple observations on a large scale. Instead, automatic personality detection, while overcoming these limitations, is based on off-the-shelf solutions trained on non-technical corpora, which might not be readily applicable to technical domains like Software Engineering (SE). In this paper, we first assess the performance of general-purpose personality detection tools when applied to a technical corpus of developers' emails retrieved from the public archives of the Apache Software Foundation. We observe a general low accuracy of predictions and an overall disagreement among the tools. Second, we replicate two previous research studies in SE by replacing the personality detection tool used to infer developers' personalities from pull-request discussions and emails. We observe that the original results are not confirmed, i.e., changing the tool used in the original study leads to diverging conclusions. Our results suggest a need for personality detection tools specially targeted for the software engineering domain.

Citations (8)

Summary

We haven't generated a summary for this paper yet.