Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Promises and Perils of Inferring Personality on GitHub (2107.05829v2)

Published 13 Jul 2021 in cs.SE

Abstract: Personality plays a pivotal role in our understanding of human actions and behavior. Today, the applications of personality are widespread, built on the solutions from psychology to infer personality. In software engineering, for instance, one widely used solution to infer personality uses textual communication data. As studies on personality in software engineering continue to grow, it is imperative to understand the performance of these solutions. This paper compares the inferential ability of three widely studied text-based personality tests against each other and the ground truth on GitHub. We explore the challenges and potential solutions to improve the inferential ability of personality tests. Our study shows that solutions for inferring personality are far from being perfect. Software engineering communications data can infer individual developer personality with an average error rate of 41%. In the best case, the error rate can be reduced up to 36% by following our recommendations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.