Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Constrained Optimization in the Presence of Noise (2110.04355v1)

Published 8 Oct 2021 in math.OC

Abstract: The problem of interest is the minimization of a nonlinear function subject to nonlinear equality constraints using a sequential quadratic programming (SQP) method. The minimization must be performed while observing only noisy evaluations of the objective and constraint functions. In order to obtain stability, the classical SQP method is modified by relaxing the standard Armijo line search based on the noise level in the functions, which is assumed to be known. Convergence theory is presented giving conditions under which the iterates converge to a neighborhood of the solution characterized by the noise level and the problem conditioning. The analysis assumes that the SQP algorithm does not require regularization or trust regions. Numerical experiments indicate that the relaxed line search improves the practical performance of the method on problems involving uniformly distributed noise. One important application of this work is in the field of derivative-free optimization, when finite differences are employed to estimate gradients.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.