Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
13 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Universal Approximation Under Constraints is Possible with Transformers (2110.03303v2)

Published 7 Oct 2021 in cs.LG, cs.AI, cs.NE, math.FA, and math.MG

Abstract: Many practical problems need the output of a machine learning model to satisfy a set of constraints, $K$. Nevertheless, there is no known guarantee that classical neural network architectures can exactly encode constraints while simultaneously achieving universality. We provide a quantitative constrained universal approximation theorem which guarantees that for any non-convex compact set $K$ and any continuous function $f:\mathbb{R}n\rightarrow K$, there is a probabilistic transformer $\hat{F}$ whose randomized outputs all lie in $K$ and whose expected output uniformly approximates $f$. Our second main result is a "deep neural version" of Berge's Maximum Theorem (1963). The result guarantees that given an objective function $L$, a constraint set $K$, and a family of soft constraint sets, there is a probabilistic transformer $\hat{F}$ that approximately minimizes $L$ and whose outputs belong to $K$; moreover, $\hat{F}$ approximately satisfies the soft constraints. Our results imply the first universal approximation theorem for classical transformers with exact convex constraint satisfaction. They also yield that a chart-free universal approximation theorem for Riemannian manifold-valued functions subject to suitable geodesically convex constraints.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.