Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Approximation Power of Deep Residual Neural Networks via Nonlinear Control Theory (2007.06007v4)

Published 12 Jul 2020 in cs.LG, cs.SY, eess.SY, math.OC, and stat.ML

Abstract: In this paper, we explain the universal approximation capabilities of deep residual neural networks through geometric nonlinear control. Inspired by recent work establishing links between residual networks and control systems, we provide a general sufficient condition for a residual network to have the power of universal approximation by asking the activation function, or one of its derivatives, to satisfy a quadratic differential equation. Many activation functions used in practice satisfy this assumption, exactly or approximately, and we show this property to be sufficient for an adequately deep neural network with $n+1$ neurons per layer to approximate arbitrarily well, on a compact set and with respect to the supremum norm, any continuous function from $\mathbb{R}n$ to $\mathbb{R}n$. We further show this result to hold for very simple architectures for which the weights only need to assume two values. The first key technical contribution consists of relating the universal approximation problem to controllability of an ensemble of control systems corresponding to a residual network and to leverage classical Lie algebraic techniques to characterize controllability. The second technical contribution is to identify monotonicity as the bridge between controllability of finite ensembles and uniform approximability on compact sets.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com