Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Supermask Pruning: Learning to Prune Image Captioning Models (2110.03298v1)

Published 7 Oct 2021 in cs.CV, cs.CL, and cs.LG

Abstract: With the advancement of deep models, research work on image captioning has led to a remarkable gain in raw performance over the last decade, along with increasing model complexity and computational cost. However, surprisingly works on compression of deep networks for image captioning task has received little to no attention. For the first time in image captioning research, we provide an extensive comparison of various unstructured weight pruning methods on three different popular image captioning architectures, namely Soft-Attention, Up-Down and Object Relation Transformer. Following this, we propose a novel end-to-end weight pruning method that performs gradual sparsification based on weight sensitivity to the training loss. The pruning schemes are then extended with encoder pruning, where we show that conducting both decoder pruning and training simultaneously prior to the encoder pruning provides good overall performance. Empirically, we show that an 80% to 95% sparse network (up to 75% reduction in model size) can either match or outperform its dense counterpart. The code and pre-trained models for Up-Down and Object Relation Transformer that are capable of achieving CIDEr scores >120 on the MS-COCO dataset but with only 8.7 MB and 14.5 MB in model size (size reduction of 96% and 94% respectively against dense versions) are publicly available at https://github.com/jiahuei/sparse-image-captioning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jia Huei Tan (4 papers)
  2. Chee Seng Chan (50 papers)
  3. Joon Huang Chuah (5 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.