Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Captioning with Sparse Recurrent Neural Network (1908.10797v2)

Published 28 Aug 2019 in cs.CV, cs.CL, and cs.LG

Abstract: Recurrent Neural Network (RNN) has been widely used to tackle a wide variety of language generation problems and are capable of attaining state-of-the-art (SOTA) performance. However despite its impressive results, the large number of parameters in the RNN model makes deployment to mobile and embedded devices infeasible. Driven by this problem, many works have proposed a number of pruning methods to reduce the sizes of the RNN model. In this work, we propose an end-to-end pruning method for image captioning models equipped with visual attention. Our proposed method is able to achieve sparsity levels up to 97.5% without significant performance loss relative to the baseline (~ 2% loss at 40x compression after fine-tuning). Our method is also simple to use and tune, facilitating faster development times for neural network practitioners. We perform extensive experiments on the popular MS-COCO dataset in order to empirically validate the efficacy of our proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jia Huei Tan (4 papers)
  2. Chee Seng Chan (50 papers)
  3. Joon Huang Chuah (5 papers)
Citations (6)