Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Injecting Planning-Awareness into Prediction and Detection Evaluation (2110.03270v1)

Published 7 Oct 2021 in cs.RO, cs.CV, cs.LG, cs.SY, and eess.SY

Abstract: Detecting other agents and forecasting their behavior is an integral part of the modern robotic autonomy stack, especially in safety-critical scenarios entailing human-robot interaction such as autonomous driving. Due to the importance of these components, there has been a significant amount of interest and research in perception and trajectory forecasting, resulting in a wide variety of approaches. Common to most works, however, is the use of the same few accuracy-based evaluation metrics, e.g., intersection-over-union, displacement error, log-likelihood, etc. While these metrics are informative, they are task-agnostic and outputs that are evaluated as equal can lead to vastly different outcomes in downstream planning and decision making. In this work, we take a step back and critically assess current evaluation metrics, proposing task-aware metrics as a better measure of performance in systems where they are deployed. Experiments on an illustrative simulation as well as real-world autonomous driving data validate that our proposed task-aware metrics are able to account for outcome asymmetry and provide a better estimate of a model's closed-loop performance.

Citations (26)

Summary

We haven't generated a summary for this paper yet.