Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Trajectory Forecasting Evaluation (2107.10297v1)

Published 21 Jul 2021 in cs.RO, cs.CV, cs.LG, cs.SY, and eess.SY

Abstract: Forecasting the behavior of other agents is an integral part of the modern robotic autonomy stack, especially in safety-critical scenarios with human-robot interaction, such as autonomous driving. In turn, there has been a significant amount of interest and research in trajectory forecasting, resulting in a wide variety of approaches. Common to all works, however, is the use of the same few accuracy-based evaluation metrics, e.g., displacement error and log-likelihood. While these metrics are informative, they are task-agnostic and predictions that are evaluated as equal can lead to vastly different outcomes, e.g., in downstream planning and decision making. In this work, we take a step back and critically evaluate current trajectory forecasting metrics, proposing task-aware metrics as a better measure of performance in systems where prediction is being deployed. We additionally present one example of such a metric, incorporating planning-awareness within existing trajectory forecasting metrics.

Citations (14)

Summary

We haven't generated a summary for this paper yet.