Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

SIRe-Networks: Convolutional Neural Networks Architectural Extension for Information Preservation via Skip/Residual Connections and Interlaced Auto-Encoders (2110.02776v2)

Published 6 Oct 2021 in cs.CV and cs.AI

Abstract: Improving existing neural network architectures can involve several design choices such as manipulating the loss functions, employing a diverse learning strategy, exploiting gradient evolution at training time, optimizing the network hyper-parameters, or increasing the architecture depth. The latter approach is a straightforward solution, since it directly enhances the representation capabilities of a network; however, the increased depth generally incurs in the well-known vanishing gradient problem. In this paper, borrowing from different methods addressing this issue, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task. The presented methodology directly improves a convolutional neural network (CNN) by preserving information from the input image through interlaced auto-encoders (AEs), and further refines the base network architecture by means of skip and residual connections. To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on five collections, i.e., MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and Caltech-256; where the SIRe-extended architectures achieve significantly increased performances across all models and datasets, thus confirming the presented approach effectiveness.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.