Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning through atypical "phase transitions" in overparameterized neural networks (2110.00683v2)

Published 1 Oct 2021 in cs.LG, cond-mat.dis-nn, math.PR, and stat.ML

Abstract: Current deep neural networks are highly overparameterized (up to billions of connection weights) and nonlinear. Yet they can fit data almost perfectly through variants of gradient descent algorithms and achieve unexpected levels of prediction accuracy without overfitting. These are formidable results that defy predictions of statistical learning and pose conceptual challenges for non-convex optimization. In this paper, we use methods from statistical physics of disordered systems to analytically study the computational fallout of overparameterization in non-convex binary neural network models, trained on data generated from a structurally simpler but "hidden" network. As the number of connection weights increases, we follow the changes of the geometrical structure of different minima of the error loss function and relate them to learning and generalization performance. A first transition happens at the so-called interpolation point, when solutions begin to exist (perfect fitting becomes possible). This transition reflects the properties of typical solutions, which however are in sharp minima and hard to sample. After a gap, a second transition occurs, with the discontinuous appearance of a different kind of "atypical" structures: wide regions of the weight space that are particularly solution-dense and have good generalization properties. The two kinds of solutions coexist, with the typical ones being exponentially more numerous, but empirically we find that efficient algorithms sample the atypical, rare ones. This suggests that the atypical phase transition is the relevant one for learning. The results of numerical tests with realistic networks on observables suggested by the theory are consistent with this scenario.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Carlo Baldassi (36 papers)
  2. Clarissa Lauditi (8 papers)
  3. Enrico M. Malatesta (26 papers)
  4. Rosalba Pacelli (3 papers)
  5. Gabriele Perugini (10 papers)
  6. Riccardo Zecchina (48 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.