Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Residual-based adaptivity for two-phase flow simulation in porous media using Physics-informed Neural Networks (2109.14290v2)

Published 29 Sep 2021 in math.NA, cs.NA, and physics.flu-dyn

Abstract: This paper aims to provide a machine learning framework to simulate two-phase flow in porous media. The proposed algorithm is based on Physics-informed neural networks (PINN). A novel residual-based adaptive PINN is developed and compared with the residual-based adaptive refinement (RAR) method and with PINN with fixed collocation points. The proposed algorithm is expected to have great potential to be applied to different fields where adaptivity is needed. In this paper, we focus on the two-phase flow in porous media problem. We provide two numerical examples to show the effectiveness of the new algorithm. It is found that adaptivity is essential to capture moving flow fronts. We show how the results obtained through this approach are more accurate than using RAR method or PINN with fixed collocation points, while having a comparable computational cost.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube