2000 character limit reached
The edge labeling of higher order Voronoi diagrams (2109.13002v1)
Published 27 Sep 2021 in math.CO, cs.CG, and cs.DM
Abstract: We present an edge labeling of order-$k$ Voronoi diagrams, $V_k(S)$, of point sets $S$ in the plane, and study properties of the regions defined by them. Among them, we show that $V_k(S)$ has a small orientable cycle and path double cover, and we identify configurations that cannot appear in $V_k(S)$ for small values of $k$. This paper also contains a systematic study of well-known and new properties of $V_k(S)$, all whose proofs only rely on elementary geometric arguments in the plane. The maybe most comprehensive study of structural properties of $V_k(S)$ was done by D.T. Lee (On k-nearest neighbor Voronoi diagrams in the plane) in 1982. Our work reviews and extends the list of properties of higher order Voronoi diagrams.