2000 character limit reached
On polynomials associated to Voronoi diagrams of point sets and crossing numbers (2304.12238v3)
Published 24 Apr 2023 in math.CO, cs.CG, and cs.DM
Abstract: Three polynomials are defined for given sets $S$ of $n$ points in general position in the plane: The Voronoi polynomial with coefficients the numbers of vertices of the order-$k$ Voronoi diagrams of $S$, the circle polynomial with coefficients the numbers of circles through three points of $S$ enclosing $k$ points of $S$, and the $E_{\leq k}$ polynomial with coefficients the numbers of (at most $k$)-edges of $S$. We present several formulas for the rectilinear crossing number of $S$ in terms of these polynomials and their roots. We also prove that the roots of the Voronoi polynomial lie on the unit circle if, and only if, $S$ is in convex position. Further, we present bounds on the location of the roots of these polynomials.
- B. M. Ábrego and S. Fernández-Merchant. The rectilinear local crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Journal of Combinatorial Theory, Series A, 151:131–145, 2017.
- On ≤kabsent𝑘\leq k≤ italic_k-edges, crossings, and halving lines of geometric drawings of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 48(1):192–215, 2012.
- The rectilinear crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT: closing in (or are we?). Thirty Essays on Geometric Graph Theory, pages 5–18, 2013.
- O. Aichholzer. http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/, a. Accessed: April 2023.
- O. Aichholzer. http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/, b. Accessed: April 2023.
- New lower bounds for the number of (≤kabsent𝑘\leq k≤ italic_k)-edges and the rectilinear crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 38(1):1–14, 2007.
- N. Alon and E. Györi. The number of small semispaces of a finite set of points in the plane. Journal of Combinatorial Theory, Series A, 41(1):154–157, 1986.
- F. Ardila. The number of halving circles. The American Mathematical Monthly, 111(7):586–591, 2004.
- F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.
- A. Aziz and Q. Mohammad. Simple proof of a theorem of Erdős and Lax. In Proceedings of the American Mathematical Society, volume 80, pages 119–122, 1980.
- J. Balogh and G. Salazar. k𝑘kitalic_k-sets, convex quadrilaterals, and the rectilinear crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 35:671–690, 2006.
- F. Chapoton and G.-N. Han. On the roots of the Poupard and Kreweras polynomials. Moscow Journal of Combinatorics and Number Theory, 9(2):163–172, 2020.
- W. Chen. On the polynomials with all their zeros on the unit circle. Journal of Mathematical Analysis and Applications, 190(3):714–724, 1995.
- Applications of random sampling in Computational Geometry II. Discrete & computational geometry, 4(5):387–422, 1989.
- The edge labeling of higher order Voronoi diagrams. arXiv preprint arXiv:2109.13002, 2021a.
- On circles enclosing many points. Discrete Mathematics, 344(10):112541, 2021b.
- A. Eremenko and W. Bergweiler. Distribution of zeros of polynomials with positive coefficients. Annales Academiae Scientiarum Fennicae Mathematica, 40:375–383, 2015.
- The expected number of points in circles. In 28th European Workshop on Computational Geometry (EuroCG 2012), pages 69–72, 2012. https://www.eurocg.org/2012/booklet.pdf.
- R. Gardner and B. Shields. The number of zeros of a polynomial in a disk. Journal of Classical Analysis, 3(2):167–176, 2013.
- C. P. Hughes and A. Nikeghbali. The zeros of random polynomials cluster uniformly near the unit circle. Compositio Mathematica, 144(3):734–746, 2008. doi:10.1112/S0010437X07003302.
- S. Kakeya. On the limits of the roots of an algebraic equation with positive coefficients. Tohoku Mathematical Journal, First Series, 2:140–142, 1912.
- E. Laguerre. Sur la résolution des équations numériques. Nouvelles Annales de Mathématiques, ser, 2:97–101, 1878.
- P. Lakatos and L. Losonczi. Self-inversive polynomials whose zeros are on the unit circle. Publicationes Mathematicae Debrecen, 65(3-4):409–420, 2004.
- Unimodularity of zeros of self-inversive polynomials. Acta Mathematica Hungarica, 138(1):85–101, 2013.
- D.-T. Lee. On k𝑘kitalic_k-nearest neighbor Voronoi diagrams in the plane. IEEE Transactions on Computers, 100(6):478–487, 1982.
- R. C. Lindenbergh. A Voronoi poset. Journal for Geometry and Graphics, 7:41–52, 2003.
- Convex quadrilaterals and k𝑘kitalic_k-sets. towards a theory of geometric graphs. Contemporary Mathematics, 342:139–148, 2004.
- M. Malik. On the derivative of a polynomial. Journal of the London Mathematical Society, 2(1):57–60, 1969.
- M. Marden. Geometry of polynomials, volume 3. American Mathematical Society Mathematical Surveys, 1966.
- M. Michelen and J. Sahasrabudhe. Central limit theorems and the geometry of polynomials. arXiv preprint arXiv:1908.09020, 2019.
- J. v. S. Nagy. Über einen Satz von Laguerre. Journal für die reine und angewandte Mathematik, 169:186–192, 1933.
- N. Obrechkoff. Sur un probleme de Laguerre. Comptes Rendus, 177:102–104, 1923.
- Spatial tessellations: Concepts and applications of Voronoi diagrams. John Wiley & Sons, 2000.
- Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials. Number 26. Oxford University Press, 2002.
- L. A. Santaló. Integral geometry and geometric probability. Cambridge university press, 2004.
- E. C. Titchmarsh. The theory of functions. Oxford University Press, USA, 1939.
- J. Urrutia. A containment result on points and circles. Preprint, February 2004. https://www.matem.unam.mx/~urrutia/online_papers/PointCirc2.pdf.