Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On polynomials associated to Voronoi diagrams of point sets and crossing numbers (2304.12238v3)

Published 24 Apr 2023 in math.CO, cs.CG, and cs.DM

Abstract: Three polynomials are defined for given sets $S$ of $n$ points in general position in the plane: The Voronoi polynomial with coefficients the numbers of vertices of the order-$k$ Voronoi diagrams of $S$, the circle polynomial with coefficients the numbers of circles through three points of $S$ enclosing $k$ points of $S$, and the $E_{\leq k}$ polynomial with coefficients the numbers of (at most $k$)-edges of $S$. We present several formulas for the rectilinear crossing number of $S$ in terms of these polynomials and their roots. We also prove that the roots of the Voronoi polynomial lie on the unit circle if, and only if, $S$ is in convex position. Further, we present bounds on the location of the roots of these polynomials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. B. M. Ábrego and S. Fernández-Merchant. The rectilinear local crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Journal of Combinatorial Theory, Series A, 151:131–145, 2017.
  2. On ≤kabsent𝑘\leq k≤ italic_k-edges, crossings, and halving lines of geometric drawings of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 48(1):192–215, 2012.
  3. The rectilinear crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT: closing in (or are we?). Thirty Essays on Geometric Graph Theory, pages 5–18, 2013.
  4. O. Aichholzer. http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/, a. Accessed: April 2023.
  5. O. Aichholzer. http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/, b. Accessed: April 2023.
  6. New lower bounds for the number of (≤kabsent𝑘\leq k≤ italic_k)-edges and the rectilinear crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 38(1):1–14, 2007.
  7. N. Alon and E. Györi. The number of small semispaces of a finite set of points in the plane. Journal of Combinatorial Theory, Series A, 41(1):154–157, 1986.
  8. F. Ardila. The number of halving circles. The American Mathematical Monthly, 111(7):586–591, 2004.
  9. F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.
  10. A. Aziz and Q. Mohammad. Simple proof of a theorem of Erdős and Lax. In Proceedings of the American Mathematical Society, volume 80, pages 119–122, 1980.
  11. J. Balogh and G. Salazar. k𝑘kitalic_k-sets, convex quadrilaterals, and the rectilinear crossing number of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Discrete & Computational Geometry, 35:671–690, 2006.
  12. F. Chapoton and G.-N. Han. On the roots of the Poupard and Kreweras polynomials. Moscow Journal of Combinatorics and Number Theory, 9(2):163–172, 2020.
  13. W. Chen. On the polynomials with all their zeros on the unit circle. Journal of Mathematical Analysis and Applications, 190(3):714–724, 1995.
  14. Applications of random sampling in Computational Geometry II. Discrete & computational geometry, 4(5):387–422, 1989.
  15. The edge labeling of higher order Voronoi diagrams. arXiv preprint arXiv:2109.13002, 2021a.
  16. On circles enclosing many points. Discrete Mathematics, 344(10):112541, 2021b.
  17. A. Eremenko and W. Bergweiler. Distribution of zeros of polynomials with positive coefficients. Annales Academiae Scientiarum Fennicae Mathematica, 40:375–383, 2015.
  18. The expected number of points in circles. In 28th European Workshop on Computational Geometry (EuroCG 2012), pages 69–72, 2012. https://www.eurocg.org/2012/booklet.pdf.
  19. R. Gardner and B. Shields. The number of zeros of a polynomial in a disk. Journal of Classical Analysis, 3(2):167–176, 2013.
  20. C. P. Hughes and A. Nikeghbali. The zeros of random polynomials cluster uniformly near the unit circle. Compositio Mathematica, 144(3):734–746, 2008. doi:10.1112/S0010437X07003302.
  21. S. Kakeya. On the limits of the roots of an algebraic equation with positive coefficients. Tohoku Mathematical Journal, First Series, 2:140–142, 1912.
  22. E. Laguerre. Sur la résolution des équations numériques. Nouvelles Annales de Mathématiques, ser, 2:97–101, 1878.
  23. P. Lakatos and L. Losonczi. Self-inversive polynomials whose zeros are on the unit circle. Publicationes Mathematicae Debrecen, 65(3-4):409–420, 2004.
  24. Unimodularity of zeros of self-inversive polynomials. Acta Mathematica Hungarica, 138(1):85–101, 2013.
  25. D.-T. Lee. On k𝑘kitalic_k-nearest neighbor Voronoi diagrams in the plane. IEEE Transactions on Computers, 100(6):478–487, 1982.
  26. R. C. Lindenbergh. A Voronoi poset. Journal for Geometry and Graphics, 7:41–52, 2003.
  27. Convex quadrilaterals and k𝑘kitalic_k-sets. towards a theory of geometric graphs. Contemporary Mathematics, 342:139–148, 2004.
  28. M. Malik. On the derivative of a polynomial. Journal of the London Mathematical Society, 2(1):57–60, 1969.
  29. M. Marden. Geometry of polynomials, volume 3. American Mathematical Society Mathematical Surveys, 1966.
  30. M. Michelen and J. Sahasrabudhe. Central limit theorems and the geometry of polynomials. arXiv preprint arXiv:1908.09020, 2019.
  31. J. v. S. Nagy. Über einen Satz von Laguerre. Journal für die reine und angewandte Mathematik, 169:186–192, 1933.
  32. N. Obrechkoff. Sur un probleme de Laguerre. Comptes Rendus, 177:102–104, 1923.
  33. Spatial tessellations: Concepts and applications of Voronoi diagrams. John Wiley & Sons, 2000.
  34. Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials. Number 26. Oxford University Press, 2002.
  35. L. A. Santaló. Integral geometry and geometric probability. Cambridge university press, 2004.
  36. E. C. Titchmarsh. The theory of functions. Oxford University Press, USA, 1939.
  37. J. Urrutia. A containment result on points and circles. Preprint, February 2004. https://www.matem.unam.mx/~urrutia/online_papers/PointCirc2.pdf.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com