Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Question Answering Performance Using Knowledge Distillation and Active Learning (2109.12662v1)

Published 26 Sep 2021 in cs.CL, cs.IR, and cs.LG

Abstract: Contemporary question answering (QA) systems, including transformer-based architectures, suffer from increasing computational and model complexity which render them inefficient for real-world applications with limited resources. Further, training or even fine-tuning such models requires a vast amount of labeled data which is often not available for the task at hand. In this manuscript, we conduct a comprehensive analysis of the mentioned challenges and introduce suitable countermeasures. We propose a novel knowledge distillation (KD) approach to reduce the parameter and model complexity of a pre-trained BERT system and utilize multiple active learning (AL) strategies for immense reduction in annotation efforts. In particular, we demonstrate that our model achieves the performance of a 6-layer TinyBERT and DistilBERT, whilst using only 2% of their total parameters. Finally, by the integration of our AL approaches into the BERT framework, we show that state-of-the-art results on the SQuAD dataset can be achieved when we only use 20% of the training data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (13)

Summary

We haven't generated a summary for this paper yet.