Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Hardness of the Determinant: Sum of Regular Set-Multilinear Circuits (2109.10094v1)

Published 21 Sep 2021 in cs.CC

Abstract: In this paper, we study the computational complexity of the commutative determinant polynomial computed by a class of set-multilinear circuits which we call regular set-multilinear circuits. Regular set-multilinear circuits are commutative circuits with a restriction on the order in which they can compute polynomials. A regular circuit can be seen as the commutative analogue of the ordered circuit defined by Hrubes,Wigderson and Yehudayoff [HWY10]. We show that if the commutative determinant polynomial has small representation in the sum of constantly many regular set-multilinear circuits, then the commutative permanent polynomial also has a small arithmetic circuit.

Summary

We haven't generated a summary for this paper yet.