Papers
Topics
Authors
Recent
2000 character limit reached

On Lower Bounds for Constant Width Arithmetic Circuits

Published 22 Jul 2009 in cs.CC | (0907.3780v2)

Abstract: The motivation for this paper is to study the complexity of constant-width arithmetic circuits. Our main results are the following. 1. For every k > 1, we provide an explicit polynomial that can be computed by a linear-sized monotone circuit of width 2k but has no subexponential-sized monotone circuit of width k. It follows, from the definition of the polynomial, that the constant-width and the constant-depth hierarchies of monotone arithmetic circuits are infinite, both in the commutative and the noncommutative settings. 2. We prove hardness-randomness tradeoffs for identity testing constant-width commutative circuits analogous to [KI03,DSY08].

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.