Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the nonorientable four-ball genus of torus knots (2109.09187v2)

Published 19 Sep 2021 in math.GT

Abstract: The nonorientable four-ball genus of a knot $K$ in $S3$ is the minimal first Betti number of nonorientable surfaces in $B4$ bounded by $K$. By amalgamating ideas from involutive knot Floer homology and unoriented knot Floer homology, we give a new lower bound on the smooth nonorientable four-ball genus $\gamma_4$ of any knot. This bound is sharp for several families of torus knots, including $T_{4n,(2n\pm 1)2}$ for even $n\ge 2$, a family Longo showed were counterexamples to Batson's conjecture. We also prove that, whenever $p$ is an even positive integer and $\frac{p}{2}$ is not a perfect square, the torus knot $T_{p,q}$ does not bound a locally flat M\"obius band for almost all integers $q$ relatively prime to $p$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.