Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving an elastic inverse problem using Convolutional Neural Networks (2109.07859v1)

Published 16 Sep 2021 in physics.data-an

Abstract: We explore the application of a Convolutional Neural Network (CNN) to image the shear modulus field of an almost incompressible, isotropic, linear elastic medium in plane strain using displacement or strain field data. This problem is important in medicine because the shear modulus of suspicious and potentially cancerous growths in soft tissue is elevated by about an order of magnitude as compared to the background of normal tissue. Imaging the shear modulus field therefore can lead to high-contrast medical images. Our imaging problem is: Given a displacement or strain field (or its components), predict the corresponding shear modulus field. Our CNN is trained using 6000 training examples consisting of a displacement or strain field and a corresponding shear modulus field. We observe encouraging results which warrant further research and show the promise of this methodology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.