Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Compressing Many-Body Fermion Operators Under Unitary Constraints (2109.05010v1)

Published 10 Sep 2021 in quant-ph and physics.chem-ph

Abstract: The most efficient known quantum circuits for preparing unitary coupled cluster states and applying Trotter steps of the arbitrary basis electronic structure Hamiltonian involve interleaved sequences of fermionic Gaussian circuits and Ising interaction type circuits. These circuits arise from factorizing the two-body operators generating those unitaries as a sum of squared one-body operators that are simulated using product formulas. We introduce a numerical algorithm for performing this factorization that has an iteration complexity no worse than single particle basis transformations of the two-body operators and often results in many times fewer squared one-body operators in the sum of squares compared to the analytical decompositions. As an application of this numerical procedure, we demonstrate that our protocol can be used to approximate generic unitary coupled cluster operators and prepare the necessary high-quality initial states for techniques (like ADAPT-VQE) that iteratively construct approximations to the ground state.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube