Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Frobenius-Ehresmann structures and Cartan geometries in positive characteristic (2109.02826v1)

Published 7 Sep 2021 in math.AG and math.DG

Abstract: The aim of the present paper is to lay the foundation for a theory of Ehresmann structures in positive characteristic, generalizing the Frobenius-projective and Frobenius-affine structures defined in the previous work. This theory deals with atlases of \'{e}tale coordinate charts on varieties modeled on homogenous spaces of algebraic groups, which we call Frobenius-Ehresmann structures. These structures are compared with Cartan geometries in positive characteristic, as well as with higher-dimensional generalizations of dormant indigenous bundles. In particular, we investigate the conditions under which these geometric structures are equivalent to each other. Also, we consider the classification problem of Frobenius-Ehresmann structures on algebraic curves. The latter half of the present paper discusses the deformation theory of indigenous bundles in the algebraic setting. The tangent and obstruction spaces of various deformation functors are computed in terms of the hypercohomology groups of certain complexes. As a consequence, we formulate and prove the Ehresmann-Weil-Thurston principle for Frobenius-Ehresmann structures. This fact asserts that deformations of a variety equipped with a Frobenius-Ehresmann structure are completely determined by their monodromy crystals.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)