Papers
Topics
Authors
Recent
2000 character limit reached

The Replicator Dynamics of Zero-Sum Games Arise from a Novel Poisson Algebra

Published 2 Sep 2021 in physics.soc-ph, math.SG, and nlin.SI | (2109.02421v1)

Abstract: We show that the replicator dynamics for zero-sum games arises as a result of a non-canonical bracket that is a hybrid between a Poisson Bracket and a Nambu Bracket. The resulting non-canonical bracket is parameterized both the by the skew-symmetric payoff matrix and a mediating function. The mediating function is only sometimes a conserved quantity, but plays a critical role in the determination of the dynamics. As a by-product, we show that for the replicator dynamics this function arises in the definition of a natural metric on which phase flow-volume is preserved. Additionally, we show that the non-canonical bracket satisfies all the same identities as the Poisson bracket except for the Jacobi identity (JI), which is satisfied for special cases of the mediating function. In particular, the mediating function that gives rise to the replicator dynamics yields a bracket that satisfies JI. This neatly explains why the mediating function allows us to derive a metric on which phase flow is conserved and suggests a natural geometry for zero-sum games that extends the Symplectic geometry of the Poisson bracket and potentially an alternate approach to quantizing evolutionary games.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.