Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Existence, Local uniqueness and periodicity of bubbling solutions for a critical nonlinear elliptic equation (2108.12206v3)

Published 27 Aug 2021 in math.AP

Abstract: We revisit the following nonlinear critical elliptic equation \begin{equation*} -\Delta u+Q(y)u=u{\frac{N+2}{N-2}},\;\;\; u>0\;\;\;\hbox{ in } \mathbb{R}N, \end{equation*} where $N\geq 5.$ There seems to be no results about the periodicity of bubbling solutions. Here we try to investigate some related problems. Assuming that $Q(y)$ is periodic in $y_1$ with period 1 and has a local minimum at 0 satisfying $Q(0)=0,$ we prove the existence and local uniqueness of infinitely many bubbling solutions of the problem above. This local uniqueness result implies that some bubbling solutions preserve the symmetry of the potential function $Q(y),$ i.e. the bubbling solution whose blow-up set is ${(jL,0,...,0):j=0,\pm 1, \pm 2,..., \pm m}$ must be periodic in $y_{1}$ provided that $L$ is large enough, where $m$ is the number of the bubbles which is large enough but independent of $L.$ Moreover, we also show a non-existence of this bubbling solutions for the problem above if the local minimum of $Q(y)$ does not equal to zero.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube