Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On variance estimation for the one-sample log-rank test (2108.08194v2)

Published 18 Aug 2021 in stat.ME

Abstract: Time-to-event endpoints show an increasing popularity in phase II cancer trials. The standard statistical tool for such one-armed survival trials is the one-sample log-rank test. Its distributional properties are commonly derived in the large sample limit. It is however known from the literature, that the asymptotical approximations suffer when sample size is small. There have already been several attempts to address this problem. While some approaches do not allow easy power and sample size calculations, others lack a clear theoretical motivation and require further considerations. The problem itself can partly be attributed to the dependence of the compensated counting process and its variance estimator. For this purpose, we suggest a variance estimator which is uncorrelated to the compensated counting process. Moreover, this and other present approaches to variance estimation are covered as special cases by our general framework. For practical application, we provide sample size and power calculations for any approach fitting into this framework. Finally, we use simulations and real world data to study the empirical type I error and power performance of our methodology as compared to standard approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.