Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation-free Heart Pathology Detection Using Deep Learning (2108.04139v1)

Published 9 Aug 2021 in cs.SD and cs.LG

Abstract: Cardiovascular (CV) diseases are the leading cause of death in the world, and auscultation is typically an essential part of a cardiovascular examination. The ability to diagnose a patient based on their heart sounds is a rather difficult skill to master. Thus, many approaches for automated heart auscultation have been explored. However, most of the previously proposed methods involve a segmentation step, the performance of which drops significantly for high pulse rates or noisy signals. In this work, we propose a novel segmentation-free heart sound classification method. Specifically, we apply discrete wavelet transform to denoise the signal, followed by feature extraction and feature reduction. Then, Support Vector Machines and Deep Neural Networks are utilised for classification. On the PASCAL heart sound dataset our approach showed superior performance compared to others, achieving 81% and 96% precision on normal and murmur classes, respectively. In addition, for the first time, the data were further explored under a user-independent setting, where the proposed method achieved 92% and 86% precision on normal and murmur, demonstrating the potential of enabling automatic murmur detection for practical use.

Citations (5)

Summary

We haven't generated a summary for this paper yet.