Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical feature embedding for heart sound classification (1904.11914v3)

Published 26 Apr 2019 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: Cardiovascular Disease (CVD) is considered as one of the principal causes of death in the world. Over recent years, this field of study has attracted researchers' attention to investigate heart sounds' patterns for disease diagnostics. In this study, an approach is proposed for normal/abnormal heart sound classification on the Physionet challenge 2016 dataset. For the first time, a fixed-length feature vector; called i-vector; is extracted from each heart sound using Mel Frequency Cepstral Coefficient (MFCC) features. Afterwards, Principal Component Analysis (PCA) transform and Variational Autoencoder (VAE) are applied on the i-vector to achieve dimension reduction. Eventually, the reduced size vector is fed to Gaussian Mixture Models (GMMs) and Support Vector Machine (SVM) for classification purpose. Experimental results demonstrate the proposed method could achieve a performance improvement of 16% based on Modified Accuracy (MAcc) compared with the baseline system on the Physoinet dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.