Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme values of derivatives of the Riemann zeta function (2108.02301v1)

Published 4 Aug 2021 in math.NT

Abstract: It is proved that if $T$ is sufficiently large, then uniformly for all positive integers $\ell \leqslant (\log T) / (\log_2 T)$, we have \begin{equation*} \max_{T\leqslant t\leqslant 2T}\left|\zeta{(\ell)}\Big(1+it\Big)\right| \geqslant e{\gamma}\cdot \ell{\ell}\cdot (\ell+1){ -(\ell+1)}\cdot\Big(\log_2 T - \log_3 T + O(1)\Big){\ell+1} \,, \end{equation*} where $\gamma$ is the Euler constant. We also establish lower bounds for maximum of $\big|\zeta{(\ell)}(\sigma+it)\big|$ when $\ell \in \mathbb N $ and $\sigma \in [1/2, \,1)$ are fixed.

Summary

We haven't generated a summary for this paper yet.