Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme values of the Dedekind zeta function on the critical line (2307.07272v1)

Published 14 Jul 2023 in math.NT

Abstract: By employing the assessment of the asymptotic size of various sums of G\'{a}l studied by La Bret`eche and Tenenbaum, we provide an improvement on the recent result of A. Bondarenko, P. Darbar, M. V. Hagen, W. Heap, and K. Seip regarding the large values of the Dedekind zeta-function on the critical line. Specifically, let $d\geqslant 3$ be an integer and $A$ be a positive constant. Denoting $K=\mathbb{Q}(\zeta_d)$, we establish that, if $T$ is sufficiently large, then uniformly for $d \ll (\log\log T)A$, \begin{equation*} \max_{ t \in [0,T]}\left|\zeta_K \left(\frac{1}{2}+it \right) \right| \gg \exp\left({(1+o(1))\varphi(d)} \sqrt{\frac{\log T \log \log \log T}{\log \log T}} \right). \end{equation*}

Summary

We haven't generated a summary for this paper yet.