Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Hyperparameter-free and Explainable Whole Graph Embedding (2108.02113v3)

Published 4 Aug 2021 in cs.LG and cs.SI

Abstract: Graphs can be used to describe complex systems. Recently, whole graph embedding (graph representation learning) can compress a graph into a compact lower-dimension vector while preserving intrinsic properties, earning much attention. However, most graph embedding methods have problems such as tedious parameter tuning or poor explanation. This paper presents a simple and hyperparameter-free whole graph embedding method based on the DHC (Degree, H-index, and Coreness) theorem and Shannon Entropy (E), abbreviated as DHC-E. The DHC-E can provide a trade-off between simplicity and quality for supervised classification learning tasks involving molecular, social, and brain networks. Moreover, it performs well in lower-dimensional graph visualization. Overall, the DHC-E is simple, hyperparameter-free, and explainable for whole graph embedding with promising potential for exploring graph classification and lower-dimensional graph visualization.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.