Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

A note on Haag duality (2108.01257v2)

Published 3 Aug 2021 in hep-th, math-ph, and math.MP

Abstract: Haag duality is a remarkable property in QFT stating that the commutant of the algebra of observables localized in some region of spacetime is exactly the algebra associated to the causally disconnected region. It is a strong condition on the local structure and has direct consequences on entanglement measures. It was first shown to hold for a free scalar field and causal diamonds by Araki in 1964 and later by many authors in different ways. In particular, Eckmann and Osterwalder (EO) used Tomita-Takesaki modular theory to give a direct proof. However, it is not straightforward to relate this proof to the works of Araki, since they rely on two forms of the canonical commutation relations (CCR), called Segal and Weyl formulations, while EO work as starting point assumes that duality holds in the so-called ``first quantization'' in the Weyl formulation. It is our purpose to first introduce the works of Araki in a more easy-to-read but still rigorous and self-contained fashion, and show how Haag duality is stated in the Segal and Weyl formulations and in both first and second quantizations (and their immediate combination). This permits to understand the setting of the EO proof of Haag duality. There is nothing essentially new in this manuscript, with the exception of what we consider a simplification of EO proof that uses the adjoint $S*$ of the Tomita operator $S$ instead of introducing several auxiliary operators. We hope this note will be useful for those seeking to understand where Haag duality comes from in a free scalar QFT.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.