Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 21 tok/s Pro
GPT-4o 90 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Wedge domains in compactly causal symmetric spaces (2107.13288v1)

Published 28 Jul 2021 in math.RT, math-ph, and math.MP

Abstract: Motivated by construction in Algebraic Quantum Field Theory we introduce wedge domains in compactly causal symmetric spaces M=G/H, which includes in particular anti de Sitter space in all dimensions and its coverings. Our wedge domains generalize Rindler wedges in Minkowski space. The key geometric structure we use is the modular flow on M defined by an Euler element in the Lie algebra of G. Our main geometric result asserts that three seemingly different characterizations of these domains coincide: the positivity domain of the modular vector field; the domain specified by a KMS like analytic extension condition for the modular flow; and the domain specified by a polar decomposition in terms of certain cones. In the second half of the article we show that our wedge domains share important properties with wedge domains in Minkowski space. If G is semisimple, there exist unitary representations of G and isotone covariant nets of real subspaces defined for any open subset of M, which assign to connected components of the wedge domains a standard subspace whose modular group corresponds to the modular flow on M. This corresponds to the Bisognano--Wichmann property in Quantum Field Theory. We also show that the set of G-translates of the connected components of the wedge domain provides a geometric realization of the abstract wedge space introduced by the first author and V. Morinelli.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.