Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the generalized Hamming weights of hyperbolic codes (2107.12594v2)

Published 27 Jul 2021 in cs.IT, math.AC, and math.IT

Abstract: A hyperbolic code is an evaluation code that improves a Reed-Muller because the dimension increases while the minimum distance is not penalized. We give the necessary and sufficient conditions, based on the basic parameters of the Reed-Muller, to determine whether a Reed-Muller coincides with a hyperbolic code. Given a hyperbolic code, we find the largest Reed-Muller containing the hyperbolic code and the smallest Reed-Muller in the hyperbolic code. We then prove that similarly to Reed-Muller and Cartesian codes, the $r$-th generalized Hamming weight and the $r$-th footprint of the hyperbolic code coincide. Unlike Reed-Muller and Cartesian, determining the $r$-th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the $r$-th footprint of a hyperbolic code that, sometimes, are sharp.

Citations (2)

Summary

We haven't generated a summary for this paper yet.