Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 235 tok/s Pro
2000 character limit reached

$μ$DARTS: Model Uncertainty-Aware Differentiable Architecture Search (2107.11500v2)

Published 24 Jul 2021 in cs.LG and cs.AI

Abstract: We present a Model Uncertainty-aware Differentiable ARchiTecture Search ($\mu$DARTS) that optimizes neural networks to simultaneously achieve high accuracy and low uncertainty. We introduce concrete dropout within DARTS cells and include a Monte-Carlo regularizer within the training loss to optimize the concrete dropout probabilities. A predictive variance term is introduced in the validation loss to enable searching for architecture with minimal model uncertainty. The experiments on CIFAR10, CIFAR100, SVHN, and ImageNet verify the effectiveness of $\mu$DARTS in improving accuracy and reducing uncertainty compared to existing DARTS methods. Moreover, the final architecture obtained from $\mu$DARTS shows higher robustness to noise at the input image and model parameters compared to the architecture obtained from existing DARTS methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.