Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MSR-DARTS: Minimum Stable Rank of Differentiable Architecture Search (2009.09209v2)

Published 19 Sep 2020 in cs.CV and cs.AI

Abstract: In neural architecture search (NAS), differentiable architecture search (DARTS) has recently attracted much attention due to its high efficiency. It defines an over-parameterized network with mixed edges, each of which represents all operator candidates, and jointly optimizes the weights of the network and its architecture in an alternating manner. However, this method finds a model with the weights converging faster than the others, and such a model with fastest convergence often leads to overfitting. Accordingly, the resulting model cannot always be well-generalized. To overcome this problem, we propose a method called minimum stable rank DARTS (MSR-DARTS), for finding a model with the best generalization error by replacing architecture optimization with the selection process using the minimum stable rank criterion. Specifically, a convolution operator is represented by a matrix, and MSR-DARTS selects the one with the smallest stable rank. We evaluated MSR-DARTS on CIFAR-10 and ImageNet datasets. It achieves an error rate of 2.54% with 4.0M parameters within 0.3 GPU-days on CIFAR-10, and a top-1 error rate of 23.9% on ImageNet. The official code is available at https://github.com/mtaecchhi/msrdarts.git.

Summary

We haven't generated a summary for this paper yet.