Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Shroer-Sauer-Ott-Yorke predictability conjecture for time-delay embeddings (2107.07847v2)

Published 16 Jul 2021 in math.DS, math-ph, and math.MP

Abstract: Shroer, Sauer, Ott and Yorke conjectured in 1998 that the Takens delay embedding theorem can be improved in a probabilistic context. More precisely, their conjecture states that if $\mu$ is a natural measure for a smooth diffeomorphism of a Riemannian manifold and $k$ is greater than the information dimension of $\mu$, then $k$ time-delayed measurements of a one-dimensional observable $h$ are generically sufficient for a predictable reconstruction of $\mu$-almost every initial point of the original system. This reduces by half the number of required measurements, compared to the standard (deterministic) setup. We prove the conjecture for ergodic measures and show that it holds for a generic smooth diffeomorphism, if the information dimension is replaced by the Hausdorff one. To this aim, we prove a general version of predictable embedding theorem for injective Lipschitz maps on compact sets and arbitrary Borel probability measures. We also construct an example of a $C\infty$-smooth diffeomorphism with a natural measure, for which the conjecture does not hold in its original formulation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.