Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Learning to Recommend Items to Wikidata Editors (2107.06423v3)

Published 13 Jul 2021 in cs.IR

Abstract: Wikidata is an open knowledge graph built by a global community of volunteers. As it advances in scale, it faces substantial challenges around editor engagement. These challenges are in terms of both attracting new editors to keep up with the sheer amount of work and retaining existing editors. Experience from other online communities and peer-production systems, including Wikipedia, suggests that personalised recommendations could help, especially newcomers, who are sometimes unsure about how to contribute best to an ongoing effort. For this reason, we propose a recommender system WikidataRec for Wikidata items. The system uses a hybrid of content-based and collaborative filtering techniques to rank items for editors relying on both item features and item-editor previous interaction. A neural network, named a neural mixture of representations, is designed to learn fine weights for the combination of item-based representations and optimize them with editor-based representation by item-editor interaction. To facilitate further research in this space, we also create two benchmark datasets, a general-purpose one with 220,000 editors responsible for 14 million interactions with 4 million items and a second one focusing on the contributions of more than 8,000 more active editors. We perform an offline evaluation of the system on both datasets with promising results. Our code and datasets are available at https://github.com/WikidataRec-developer/Wikidata_Recommender.

Citations (11)

Summary

We haven't generated a summary for this paper yet.