Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring and Eliciting Needs and Preferences from Editors for Wikidata Recommendations (2212.01818v1)

Published 4 Dec 2022 in cs.HC and cs.IR

Abstract: Wikidata is an open knowledge graph created, managed, and maintained collaboratively by a global community of volunteers. As it continues to grow, it faces substantial editor engagement challenges, including acquiring new editors to tackle an increasing workload and retaining existing editors. Experiences from other online communities and peer-production systems, including Wikipedia, suggest that recommending tasks to editors could help with both. Our aim with this paper is to elicit the user requirements for a Wikidata recommendations system. We conduct a mixed-methods study with a thematic analysis of in-depth interviews with 31 Wikidata editors and three Wikimedia managers, complemented by a quantitative analysis of edit records of 3,740 Wikidata editors. The insights gained from the study help us outline design requirements for the Wikidata recommender system. We conclude with a discussion of the implications of this work and directions for future work.

Summary

We haven't generated a summary for this paper yet.