2000 character limit reached
Multiplicative dependence of rational values modulo approximate finitely generated groups (2107.05371v3)
Published 12 Jul 2021 in math.NT
Abstract: In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are `close' (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number field $K$. For example, we show that under some conditions on rational functions $f_1, \ldots, f_n\in K(X)$, there are only finitely many elements $\alpha \in K$ such that $f_1(\alpha),\ldots,f_n(\alpha)$ are multiplicatively dependent modulo such sets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.