Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Scaling asymptotics for Szegő kernels on Grauert tubes (2107.05105v2)

Published 11 Jul 2021 in math.SP, math.AP, and math.CV

Abstract: Let $M_\tau$ be the Grauert tube of radius $\tau$ of a closed, real analytic manifold $M$. Associated to the Grauert tube boundary is the orthogonal projection $\Pi_\tau \colon L2(\partial M_\tau) \to H2(\partial M_\tau)$, called the Szeg\H{o} projector. Let $D_{\sqrt{\rho}}$ denote the Hamilton vector field of the Grauert tube function $\sqrt{\rho}$ acting as a differential operator. We prove scaling asymptotics for the spectral localization kernel of the Toeplitz operator $\Pi_\tau D_{\sqrt{\rho}} \Pi_\tau$. We also prove scaling asymptotics for the tempered spectral projections kernel $P_{\chi, \lambda}(z,w) = \sum_{\lambda_j \le \lambda} e{-2\tau\lambda_j} \phi_{\lambda_j}\mathbb{C}(z) \overline{\phi_{\lambda_j}\mathbb{C}(w)}$, where $\phi_{\lambda_j}\mathbb{C}$ are analytic extensions to the Grauert tube of Laplace eigenfunctions on $M$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.