Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symmetry Reduction of States I (2107.04900v3)

Published 10 Jul 2021 in math-ph, math.MP, and math.QA

Abstract: We develop a general theory of symmetry reduction of states on (possibly non-commutative) *-algebras that are equipped with a Poisson bracket and a Hamiltonian action of a commutative Lie algebra $g$. The key idea advocated for in this article is that the ``correct'' notion of positivity on a *-algebra $A$ is not necessarily the algebraic one, for which positive elements are sums of Hermitian squares $a*a$ with $a \in A$, but can be a more general one that depends on the example at hand, like pointwise positivity on *-algebras of functions or positivity in a representation as operators. The notion of states (normalized positive Hermitian linear functionals) on $A$ thus depends on this choice of positivity on $A$, and the notion of positivity on the reduced algebra $A_{red}$ should be such that states on $A_{red}$ are obtained as reductions of certain states on $A$. We discuss three examples in detail: Reduction of the *-algebra of smooth functions on a Poisson manifold $M$, reduction of the Weyl algebra with respect to translation symmetry, and reduction of the polynomial algebra with respect to a $U(1)$-action.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.