Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computational Benefits of Intermediate Rewards for Goal-Reaching Policy Learning (2107.03961v5)

Published 8 Jul 2021 in cs.AI

Abstract: Many goal-reaching reinforcement learning (RL) tasks have empirically verified that rewarding the agent on subgoals improves convergence speed and practical performance. We attempt to provide a theoretical framework to quantify the computational benefits of rewarding the completion of subgoals, in terms of the number of synchronous value iterations. In particular, we consider subgoals as one-way {\em intermediate states}, which can only be visited once per episode and propose two settings that consider these one-way intermediate states: the one-way single-path (OWSP) and the one-way multi-path (OWMP) settings. In both OWSP and OWMP settings, we demonstrate that adding {\em intermediate rewards} to subgoals is more computationally efficient than only rewarding the agent once it completes the goal of reaching a terminal state. We also reveal a trade-off between computational complexity and the pursuit of the shortest path in the OWMP setting: adding intermediate rewards significantly reduces the computational complexity of reaching the goal but the agent may not find the shortest path, whereas with sparse terminal rewards, the agent finds the shortest path at a significantly higher computational cost. We also corroborate our theoretical results with extensive experiments on the MiniGrid environments using Q-learning and some popular deep RL algorithms.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.