Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparison of Data-Driven Techniques for Power Grid Parameter Estimation (2107.03762v1)

Published 8 Jul 2021 in eess.SY and cs.SY

Abstract: Power grid parameter estimation involves the estimation of unknown parameters, such as inertia and damping coefficients, using observed dynamics. In this work, we present a comparison of data-driven algorithms for the power grid parameter estimation problem. First, we propose a new algorithm to solve the parameter estimation problem based on the Sparse Identification of Nonlinear Dynamics (SINDy) approach, which uses linear regression to infer the parameters that best describe the observed data. We then compare its performance against two benchmark algorithms, namely, the unscented Kalman filter (UKF) approach and the physics-informed neural networks (PINN) approach. We perform extensive simulations on IEEE bus systems to examine the performance of the aforementioned algorithms. Our results show that the SINDy algorithm outperforms the PINN and UKF algorithms in being able to accurately estimate the power grid parameters over a wide range of system parameters (including high and low inertia systems). Moreover, it is extremely efficient computationally and so takes significantly less time than the PINN algorithm, thus making it suitable for real-time parameter estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.